Quiz C15

Standing waves and resonance

1. A standing wave of frequency 300 Hz is established on a string with both ends fixed.

What is the frequency of the first harmonic on the same string?

A 60 Hz	В	100 Hz	C 120 Hz	D 180 Hz
	_		••	

2. A standing wave is established on a string with both ends fixed. Two points of the string are marked P and Q.

What is true about the phase difference and the amplitude of oscillations of P and Q?

	Phase difference	Amplitude		
Α	0	Same		
В	0	Different		
С	π	Same		
D	π	Different		

3. The diagram shows a standing wave on a string with both ends fixed.

Which property is **not** the same for all points on the string?

- A Frequency
- B Phase
- C Amplitude
- **D** Period
- **4.** A standing wave is established on a string of length 0.90 m with both ends fixed. The speed of a travelling wave on this string is 180 m s⁻¹.

What is the frequency of the standing wave?

A 60 Hz B 120 Hz C 200 Hz D 300 Hz

5. The first harmonic of a standing wave is established in a pipe X with one open and one closed end. The second harmonic of a standing wave is established in a pipe Y that has both ends open.

The frequency in X is double that in Y. What is the ratio $\frac{L_{x}}{L_{y}}$ of the lengths of the pipes?

A
$$\frac{1}{8}$$
 B $\frac{1}{4}$ **C** $\frac{1}{2}$ **D** 1

6. A standing wave is established in a tube with one closed and one open end.

How many nodes will there be when the frequency of the standing wave is tripled?

A 1 B 2 C 3 D 4

7. The diagram shows a standing wave of period *T* in a pipe with one open and one closed end. The solid line represents the wave at t = 0 and the dotted line at $t = \frac{T}{2}$. The dot is the equilibrium position of a particle P in the pipe.

What is the position of P at $t = \frac{T}{2}$? The equilibrium position is the black dot at the centre.

8. Two consecutive harmonics in a pipe with both ends open have frequencies 240 Hz and 320 Hz. What is the frequency of the first harmonic?

A 40 Hz B	80 Hz	C 120 Hz	D 160 Hz
-------------------------	-------	-----------------	-----------------

9. A tuning fork is sounded above a tube partially filled with water. **Consecutive** harmonics are established when the length *L* of the air column is 18 cm and 30 cm.

What is the length of the air column for which the **next** harmonic will be heard?

Α	36 cm	В	42 cm	С	48 cm	D	54 cm

- **10.** The natural frequency of an oscillating system is f_0 . The system is being driven by an external periodic force of frequency f_D . What happens to the resonant frequency as the amount of damping on the system increases?
 - **A** It stays constant at f_0 .
 - **B** It becomes smaller than f_0 .
 - **C** It becomes larger than f_0 .
 - ${\bf D}\,$ It becomes the average of $\,f_{\scriptscriptstyle \rm O}\,$ and $\,f_{\scriptscriptstyle \rm D}\,.$

Quiz C15		
An	swers	
1	В	
2	В	
3	С	
4	D	
5	Α	
6	В	
7	Α	
8	В	
9	В	
10	В	